Inequalities for Гp function and Gamma function
نویسندگان
چکیده
منابع مشابه
Inequalities for the Gamma Function
We prove the following two theorems: (i) Let Mr(a, b) be the rth power mean of a and b. The inequality Mr(Γ(x), Γ(1/x)) ≥ 1 holds for all x ∈ (0,∞) if and only if r ≥ 1/C − π2/(6C2), where C denotes Euler’s constant. This refines results established by W. Gautschi (1974) and the author (1997). (ii) The inequalities xα(x−1)−C < Γ(x) < xβ(x−1)−C (∗) are valid for all x ∈ (0, 1) if and only if α ≤...
متن کاملInequalities for Gamma Function Ratios
Write R(x, y) = Γ(x + y) Γ(x). Inequalities for this ratio have interesting applications, and have been considered by a number of writers over a long period. In a Monthly article [7], Wendel showed that x(x + y) y−1 ≤ R(x, y) ≤ x y for 0 ≤ y ≤ 1. (1) Wendel's method was an ingenious application of Hölder's inequality to the integral definition of the gamma function. Note that both inequalities ...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولSome inequalities for the gamma function
In this paper are established some inequalities involving the Euler gamma function. We use the ideas and methods that were used by J. Sándor in his paper [2].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2013
ISSN: 2391-4661
DOI: 10.1515/dema-2013-0474